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FORMATION OF AN OXY-CHLORIDE OVERLAYER AT A Bi(0001)
SURFACE
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1. Chemistry Department, Faculty of Arts and Sciences, Ondokuz Mayis University,
55139 Samsun-Turkey.

2. School of Chemistry and Applied Chemistry, University of Wales, P.O. Box 912,
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ABSTRACT

A facile oxygen-induced chemisorptive replacement reaction occurs when a
Bi(0001)-O overlayer is exposed to hydrogen chloride at 298K. The overlayer,
which conforms to the stoichiometry BiOCly, is stable in contrast to analogous
chemistry observed earlier with a Pb(110) surface. Evidence for discrete localized
states associated with Bi2+ or Bi3* species is observed from shifts in the Bi(4f)
binding energies while the charge distribution within the bismuth-chlorine bond is
shown to be sensitive to the presence of oxygen adatoms within the oxy-chloride
overlayer.
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INTROD 1ON

The activation of adsorbates and the enhancement of surface reactivity by
chemisorbed oxygen at different metal surfaces has been well established!.2
through photoelectron spectroscopy. In earlier studies34 of the sp-metals silver
and magnesium the activation of halogen hydrides by surface oxygen was
investigated, with evidence for the electronegative chlorine adatoms participating in
strong hydrogen bonding with adsorbates. Other examples of oxygen activation of
hydrogen chioride leading to chemisorptive replacement of oxygen by chlorine
adatoms have been reported for Cu(111) and Pb(100) surfaces.>¢ In the latter
case the chloride overlayer was found to be metastable reverting suddenly to the
clean metal when the surface oxygen was completely replaced. In other words the
chloride overlayer was stable only in the presence of surface oxygen.

Bismuth oxide and mixed oxides of bismuth are of considerable interest in
selective oxidation catalysis”-8 while bismuth oxide combined with chlorine can be
used as a highly selective oxidation catalyst.9 Furthermore bismuth oxychlorides
exhibit high catalytic activity in the selective oxidation of hydrocarbons!0.11. The
identification of oxychloride overlayers and in particular their stoichiometry and the
charge distribution within the overlayer is therefore of general interest in
understanding catalytic activity.

EXPERIMENTAL

Photoelectron spectra were obtained using a VG ESCA-3 spectrometer. A
Bi(0001) single crystal which had been mechanically polished using diamond paste
and chemically cleaned using acetone, was washed and then dried prior to insertion
in the spectrometer. The crystal surface was cleaned by argon ion bombardment
and annealed at 470K. Spectroscopically pure oxygen was obtained from BOC Ltd
in glass bottles while hydrogen chloride was supplied in gas cylinders by Matheson
Gas Products. The oxygen bulb was attached directly to the spectrometer's vacuum
line. Hydrogen chloride was purified on a separate vacuum line by freeze-thaw
cycles, sealed into glass bottles and connected to the gas handling system. The
purity of these gases was checked with a quadrupole mass spectrometer. The

binding energies of the photoelectron peaks were calibrated against the clean
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Bi(4f7/2) peak at 156.5 eV12. The surface concentrations of various species were
calculated using the equation of Carley and Roberts!3.

RESULTS AND DISCUSSION

An atomically clean Bi(0001) surface exposed to SO00L of dioxygen at
room temperature shows a single O(1s) peak of 529 eV binding energy (figure 1).
This is accompanied by a shift in the Bi(4f) binding energy (figure 2) and the ratio
of the oxygen and Bi®* concentrations calculated from the O(1s) and Bi(4f) spectra
is in a 1:1 ratio suggesting the formation of a BiO overlayer with Bi in the 2+
oxidation state. The surface was then exposed to hydrogen chloride and O(1s),
C1(2p) and Bi(4f) spectra taken. The intensity of the O(ls) peak at 529 eV
decreased after 20L. HCI exposure while the CI(2p) develops intensity due to
surface chloride formation {figures 1A(c) and 1B(c)]. The attenuation of the 529
eV peak is accompanied by the development of intensity at 529.8 eV.

The shoulder present at 158.3 eV in the Bi(4f) spectrum [figure 2A(b)] is
therefore assigned to the Bi2+ component. The chemical shift between Bi0 and
Bi®* components increases from 1.8 eV to 2.7 eV as the Bi2+ species are replaced
and resulting in the shifted and relatively broader Bi(4f) spectrum with peaks at
159.2 eV and 164.5 eV revealed in the Bi(4f) differ3ence spectrum (figure 2B).
These shifted peaks suggest the development of a more ionic metal-ligand bond
than Bi2+.

The concentration of the oxygen decreased to 0.52x1015 atoms-cm-2 after
the initial (20L) exposure of HCl(g) and continued to decrease slowly with
increasing exposure (figure 3). The O(ls) and CI(2p) peak intensities remain
unchanged for HCl(g) exposures in the range 60-600L. The maximum chlorine
concentration of 1.1x1015 atoms-cm-2 corresponds to a monolayer (figure 3). The
Bi2* concentration (see difference spectra figure 2) decreases only very slightly and
the stoichiometry of the oxy-chloride overlayer is close to BiOClp which is
thermally stable up to at least 420K in vacuo!4. The BiOCly(,) overlayer however
reacts slowly with HCI at very high exposures, the surface chloride concentration
decreasing by 20% (figure 3).

Oxygen interaction with Bi(0001) clearly leads to the formation of Bi2+
associated with the oxide overlayer of stoichiometry BiO. Although HClg) does
not interact with an atomically clean Bi(0001) surface at 298K, this overlayer
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FIGS. 1A and 1B. XP O(ls) and Cl(2p) spectra for a Bi(0001) surface after
exposure to oxygen followed by exposure to hydrogen chloride at 298K: (a) clean;
(b) 5x103L O2(gy: (¢) 20L HCl(gy; (d) 60L HClgg). (e) 200L HClgg)y; (f) 600L
HClg), (g) 30000L HClg).
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FIGS. 2A and 2B. XP Bi(4f) and Bi(4f) difference spectra - with B® component
removed - for a Bi(0001) surface after exposure to oxygen followed by exposure to
hydrogen chloride at 298K: (a) clean; (b) 5x103L Oz(g); (c) 20L HCl(g); (d)
60L HCl(g); (f) 600L HClggy; (g) 30000L HCl(g).

undergoes a facile chemisorptive replacement through O-induced proton extraction
and water desorption to generate a chemisorbed oxy-chloride overlayer on exposure
to HCl(gy. At room temperature the ratio of surface oxygen to chlorine atoms
participating in the chemisorptive replacement reaction is 1:2 but the reaction
becomes slow when the surface stoichiometry is BiOCl (figure 3).
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FIG. 3. The variation of surface concentrations of oxygen and chlorine species
with exposure to hydrogen chloride for the interaction of HCI(g) with a pre-
oxidised Bi(0001) at 298K.

On further more extensive exposure to HCl(g) at 298K (figures 1,2 & 3)
both the surface oxygen and Bi®+ concentrations decrease while the chlorine
concentration increases slightly. The ogi¥/0g% concentration ratio remains
unchanged suggesting that charge compensation is maintained within the overlayer.
Clearly, each surface oxygen removed at high HCI exposures is not, under these
conditions, being replaced by two chemisorbed chlorine atoms and we suggest that
the chlorine within the oxy-chloride overlayer desorbs as dichlorine. In other
words the reaction occurring is the oxidation of hydrogen chloride, this being
accompanied by the reduction of some of the Bi2+ species to Bi0 a
thermodynamically highly favourable process. The 2.7 eV shift in the Bi(4f) peaks
(figure 2) with respect to those characteristic of the clean metal indicates that the
oxy-chloride overlayer is highly ionic in character. Such large shifts nearly 3 eV, in
metal substrate peaks are not usually observed in the chemisorption of simple
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diatomic molecules and suggest the presence of high oxidation state Bi3+ species.
The ratio of surface chlorine to bismuth atoms in the highest oxidation state is 3:1
which further supports the presence of BiCls.

When the oxide species are removed at high HCI exposures (figure 3) the
electron density at the chlorine adatoms is suggested to increase in order to maintain
charge neutality. In other words the chlorine originally present within the 'oxy-
chloride' overlayer has, with loss of oxygen, become a more ionically bonded
chemisorbed chlorine. Surface oxygen is therefore seen to determine not only the
reactivity of the Bi(0001) surface to the halogen-hydride but also the charge
distribution within the Bi-Cl bond in the oxy-chloride species.

In summary we have observed an oxygen induced chemisorptive
replacement reaction generating a stable ionic bismuth oxy-chloride overlayer. The
activity of the chemisorbed BiO overlayer in efficient and facile H-abstraction is
compatible with the high activity of bismuth oxide in selective oxidation of
hydrocarbons.!7 The results also throw some light on the mechanism of the
heterogeneous oxidation of hydrogen chlonde to dichlorine.
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